
Topological Hochschild homology

Usual definition. Topological Hochschild homology is defined as the realization
of the cyclic bar construction:

(1) THH(A) = |Barcyc(A)| =
∣∣∣∣Bar(A) ⊗

A⊗Aop
A

∣∣∣∣

for an associative (cofibrant) monoid A.

A category of configurations in S1. The usual pictorial interpretation of the
cyclic bar construction using points on a circle can be made precise. For that
purpose we define the Top-enriched category M(S1):
• The objects of M(S1) are the finite subsets of S1.
• Given S, T ⊂ S1 two finite subsets of S1, the topological space of morphisms

M(S1)(S, T ) is the space of triples (f, t,α) in which f : S → T is a function,
t ∈ [0,+∞[ and α : S × [0, t] → S1 is a homotopy from the inclusion S ↪→ S1 to
the composition S −→

f
T ↪→ S1 verifying

α(x, u) = α(y, u)⇒ ∀
v∈[u,t]

α(x, v) = α(y, v)

for all x, y ∈ S, u ∈ [0, t]
Let OrdZ be the category obtained by taking connected components of the mor-
phism spaces in M(S1). Then the functor M(S1) → OrdZ is a bijection on objects
and a weak equivalence on morphism spaces. An elegant alternative description of
OrdZ is given by Elmendorf [2].

THH from OrdZ. In order to connect back to Hochschild homology, observe that
there exists a functor ∆op → OrdZ and Barcyc(A) extends to

hh(A) : OrdZ → C

The methods of [1] prove that ∆op → OrdZ is homotopy cofinal and so topological
Hochschild homology can be recovered as a homotopy colimit over OrdZ:

THH(A) * hocolim
OrdZ

hh(A)

To be more precise on the proof of the mentioned homotopy cofinality, let Z
be the left Kan extension of ∆• : ∆ → sSet along ∆op → OrdZ. Then using the
duality OrdZ * OrdZop (given in [2]), Z can be seen to be:

Z(k)[l] = OrdZ(l + 1, k)
= {((t, ij+1), . . . , (t, il), (t + 1, i0), . . . , (t + 1, ij)) : t ∈ Z, 0 ≤ j ≤ l,

0 ≤ i0 ≤ . . . ≤ il ≤ k}

with the obvious faces and degeneracies. This gives a triangulation of R×∆k and
so |Z(k)| = R×∆k * ∗.

Associative monoids

Classifying associative monoids. OrdΣ is the category of finite non-commutative
sets. Its objects are finite sets and an element of OrdΣ(S, T ) is a map of finite sets
f : S → T and a total order in f−1(x) for each x ∈ T . There is a symmetric
monoidal structure on OrdΣ that on objects is given by the disjoint union of finite
sets. The category OrdΣ classifies associative monoids in a symmetric monoidal cat-
egory. More precisely, the category of associative monoids in a symmetric monoidal
category C is equivalent to the category of symmetric monoidal functors OrdΣ→ C.
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More generally, given on operad P , there exists a symmetric monoidal category
P such that the category of P -algebras in a symmetric monoidal category C is
equivalent to the category of symmetric monoidal functors P → C. The category
P has N as its set of objects, where the symmetric monoidal structure is given by
addition in N. Furthermore, there is a symmetric monoidal functor P → (FinSet,-)
and P (n) = P (n, 1) for n ∈ N. The conclusion of the previous paragraph can then
be restated as Ass * OrdΣ.

THH from OrdΣ. There is a functor

i : ∆op → OrdΣ

i[n] = n + 1
We can compute the left Kan extension of ∆• : ∆ → sSet along iop, which we call
X:

X(k) = (LKEiop∆•) (k) = OrdΣ(k, i−)
Then based on the argument of [1] we can show that

X(k) * (S1)$(k−1)! * S1 × (Σk/Ck)

which was proved in [6]. The relevance of these spaces is that

(2) THH(A) = X ⊗
OrdΣ

A

for any associative monoid A. A denotes the symmetric monoidal functor OrdΣ→
C that classifies A. We can also relate X to OrdZ: there is a natural functor
OrdZ → OrdΣ which is (essentially) a category fibred in groupoids. The corre-
sponding fibre functor Y : OrdΣop → Grpd has a nerve equivalent to X.

Configuration spaces of S1. The first observation we can make is that

|X(k)| * S1 × (Σk/Ck) * Conf(S1, k)

Can we formulate the functor X in a natural way? Well, for that purpose, let us
look at an equivalent replacement of the category Ass, namely D1 where D1 is the
little intervals operad. The equivalence D1 → Ass gives us an equivalence D1 → Ass.
A description of D1 is:

D1(k, l) = {f ∈ Emb([0, 1]$k, [0, 1]$l) :f preserves orientation,

f has locally constant speed}

and the functor D1
op → Assop

|X|−−→ Top is equivalent to D[S1] given by:

D[S1](k) = {f ∈ Emb([0, 1]$k, S1) :f preserves orientation,

f has locally constant speed}

Note that there is a canonical equivalence D[S1](k) ∼−→ Conf(S1, k) for k ∈ N.
Note also that the conditions on locally constant speed don’t actually change the
homotopy type and therefore are not really necessary. In any event:

D[S1] ⊗
D1

A * X ⊗
OrdΣ

A = THH(A)

Commutative monoids

Classifying commutative monoids. The commutative operad Comm is such
that Comm * (FinSet,-). Therefore a commutative monoid in a symmetric
monoidal category is the same as a symmetric monoidal functor FinSet→ C.
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THH from FinSet. Let j : ∆op → FinSet be the composite

∆op i−→ OrdΣ→ FinSet

Then the left Kan extension of ∆• along jop is:

(LKEjop∆•) (k) = FinSet(k, j−)

Noting that S1 = ∆1/∂∆1 has l+1 l-simplices and that FinSet(k, j([l])) has (l+1)k

elements it becomes straightforward to prove

FinSet(k, j−) = (S1)×k

and thus
LKEjop∆• = (S1)×− = sSet(−, S1)

In particular

(3) THH(A) = (S1)×− ⊗
FinSet

A

for a commutative monoid A. This expression can be seen to coincide with S1⊗A
(see [3]), the tensor of S1 with the commutative monoid A coming from the enrich-
ment of commutative monoids over sSet.

Spectral sequences

Bökstedt spectral sequence. The definition (1) gives us a spectral sequence for
an associative ring spectrum A:

HH∗(H∗(A)) =⇒ H∗(THH(A))

where HH∗ stands for Hochschild homology of an associative ring. This is usually
called the Bökstedt spectral sequence.

Associative and commutative monoids. The reformulations (2) and (3) give
rise to two spectral sequences. For an associative ring spectrum A we have:

TorOrdΣ
∗ (H∗(X), H∗(A)) =⇒ H∗(THH(A))

For a commutative ring spectrum:

TorFinSet
∗ (H∗((S1)×−), H∗(A)) =⇒ H∗(THH(A))

A simple application. Let us compute H∗(THH(MU)). The Bökstedt spectral
sequence gives us:

HH∗(HZ∗(MU)) =⇒ HZ∗(THH(MU))

Observing that HZ∗(MU) = Z[(xi)i>0] (with |xi| = 2i) we get:

HH∗(HZ∗(MU)) = HZ∗(MU)⊗ΛZ((xi)i>0)

The spectral sequence for FinSet over the rationals collapses since the E2-term
is concentrated on the 0th-column. The E2-term is HQ∗(MU)⊗ΛZ((xi)i>0) and
therefore HQ∗(THH(MU)) = HQ∗(MU)⊗ΛZ((xi)i>0). Consequently the Bökstedt
spectral sequence must collapse and

HZ∗(THH(MU)) = HH∗(HZ∗(MU))
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